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Quantificational States & Argument Separation 
 
Richard Larson (Stony Brook University) 
 
Under Davidsonian proposals, the semantics of relational Vs goes from (1a) → (1b) 
→ (1c). Similarly (in principle) for relational As (2a-c), Ps (3a-c) and Ns (4a-c). 
 
(1) Shem kicked Shaun.     (2) Shem is envious of Shaun. 
 a. kick( x, y )         a. envious-of( x, y )  
 b. kick( x, y, e)         b. envious-of( x, y, e ) 
 c. kicking(e) & θ1(e, x) & θ2(e, y)   c. envy(e) & θ1(e, x) & θ2(e, y) 
      “ARGUMENT SEPARATION” 

(3) Shem is near Shaun.     (4) Shem is a relative of Shaun.   
 a. near( x, y )         a. relative-of( x, y ) 
 b. near ( x, y, e )         b. relative-of( x, y, e ) 
 c. proximity(e) & θ1(e, x) & θ2(e, y)  c. kinship(e) & θ1(e, x) & θ2(e, y)  
 
Consider now quantifiers, widely taken to express relations between properties 
(5a)/(6a). Are state variables motivated here too (5b)/(6b)? Is argument separation 
desirable, or even possible (5c)/(6b)? 
 
(5) All men complain.       (6) Men always complain. 
 a.  ALL( X , Y )         a.  ALWAYS( X , Y )  
 b. ALL( X , Y, e )         b. ALWAYS( X , Y, e ) 
 c. P(e) & θ1(e, X) & θ2(e, Y)     c. P(e) & θ1(e, X) & θ2(e, Y) 
 
The answers are far from clear.   
■ With V, A, P and N we have some intuitive grasp on the events/states involved, 

and plausible relations to them. With quantification these notions are obscure.  
■ Surely if anything would seem to embody a pure relation between individuals,  

it’s a Q-relation, which simply evaluates cardinalities, proportions, etc. of sets of 
individuals (7a,b). What happens to this relation with a state interposed (7c,d)?  

 
(7) a. EVERY( X , Y )     c. EVERY(e) & θ1(e, X) & θ2(e, Y) 
 b.  X   Y     d.  X            Y 
   a          a 
   b          b 
   c   c       c             c 
   d   ⊇" d       d  ←θ1→ e ←θ2→   d 
   f   f       f  ?       ?      f 
 
We seem to be trying to “Davidsonianize” set theory.  
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Nonetheless, in this talk, I will argue that under certain assumptions: 
■ Quantificational state variables do seem to be motivated.   
■ Argument separation with quantifiers is both desirable conceptually and 

possible technically.  
I will take these points in order. 
 
 
1.0 Motivating the State Parameter 
 
The idea of quantificational states is not unprecedented. Barwise and Perry (1985) 
offer a similar notion within situation semantics (8).  
 
(8) Some animal is eating. 
 S3 = [s3 | in s3: co-instantiated,  [x | in s3: animal, x; yes], 
     [y | in s3: at l: eating, y, b; yes]; yes] 
    
In this framework, the motivation is largely “architectural”. Ss describe situations. 
Hence quantificational Ss must describe quantificational situations. Hence there 
must be quantificational situations to describe. 
 
In a Davidsonian framework, we can find motivation in elements that express 
relations to eventualities: causatives, perception verbs and adverbial quantifiers. 
 
1.1 Causing Quantificational States 
 
Davidson (1967a) proposes that causation is a relation between eventualities (9) 
(which include both events and states) 
 
(9)  CAUSE( e , e’ ) 
 
(10) a. John’s sneezing made Mary leave. 
 b. John’s sneezing �  ιe[sneeze(John,e)] 
 c. Mary leave    �  �e’[leave(Mary,e’)] 
 d. John’s sneezing made Mary leave �  
  �e’ leave(Mary,e’) & CAUSE( ιe[sneeze(John,e)] , e’ )] 
 
If this view is adopted, reference to Q-states seems motivated. Consider (11-12) 
from Johnston (1994): 
 
(11) a. Leopold always robs a bank because he needs money fast. 
 b. Frankie always misses the bus because he is a slow runner. 
  (cf. Because he is a slow runner Frankie always misses the bus.) 
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(12) John always sold shares because he needed the money.  
 a. ‘Each event of John’s selling shares was caused by a state of John’s 

needing money’ 
 b. ‘John’s need for money caused a certain behavioral pattern, viz.: John’s 

always selling shares.’ 
  (cf. Because he needed the money John always sold shares.) 
 
In (11a)/(12a) individual states cause individual events. But (11b) and (12b), a state 
causes a “quantificational pattern”. Consider also (13): 
 
(13) a. [a dog’s biting him in childhood] made  
  [John always become nervous when a dog was near him].  
 b. [Fido’s conditioning] caused his salivating. 
 
Always binds all events variables in its scope; hence without a state corresponding 
to always itself, CAUSE will have no second event to relate to (14). We appear to 
need something like (15):  
               ⬇   
(14) CAUSE( ιe [a-dog’s-biting-John(e)] , ?? )  
 ALWAYS( {e”: John-become-nervous(e”)} , {e*: a-dog-near-John(e*)} ) 
 
(15) �e [ CAUSE( ιe [a-dog’s-biting-John(e)] , e ) &               ⬇ 
 ALWAYS( {e”: John-become-nervous(e”)} , {e*: a-dog-near-John(e*)} , e )    
 
 
1.2 Perceiving Quantificational States 
 
Higginbotham (1983) and Vlach (1983) argue that perception is a relation between 
individuals (x,y), where the latter (y) can be an eventuality (16).  
 
(16)  SEE/HEAR( x , y , e ) 
 
(17) a. John heard Mary leave. 
 b. Mary leave.      �  �e’ [leave(Mary,e’)] 
 d. John heard Mary leave �  �e�e’[leave(Mary,e’) & HEAR( John, e’ , e)] 
 
Again, if this view is adopted, reference to Q-states seems natural. Consider (18a,b). 
 
(18) a. John heard Mary frequently complain about her job. 
  (≠ John frequently heard Mary complain about her job.) 
 b. John saw Mary often leave before 5:00pm. 
  (≠ John often saw Mary leave before 5:00pm.) 
 
In both it seems John sees/hears, not specific events, but instead a regular pattern 
of behavior on Mary’s part - a state.   
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Frequently binds all events variables in its scope; without a state corresponding to 
frequently itself, HEAR has no second event to relate to (19). We appear to need 
something like (20):  
         ⬇   
(19) �e’ [ HEAR( John , ?? , e’ ) & 
 FREQ( {e”: Mary-complain-about-job(e”)} , {e*: C(e*)} )    
 
(20) �e �e’ [ HEAR( John , e , e’ ) &                  ⬇ 
 FREQ( {e”: Mary-complain-about-job(e”)} , {e*: C(e*)},  e  )       
 
 
1.3 Quantifying Over Quantificational States 
 
Adverbial quantifiers have been analyzed as quantifying over eventualities 
(Herburger 2000). In GQ terms, this means relating sets (21)/(22a,b). 
 
(21) ALWAYS( {e: P(e)} , {e*: Q(e*)} ) 
 
(22) a. John always eats in the hotel restaurant. 
 b. ALWAYS( {e: John-eats-in-HR(e)} , {e*: C(e*)} ) 
 
If this is correct, then consider sentences involving multiple adverbial Qs (23a,b). 
 
(23) a. Usually (when he is staying at the Four Seasons)  
  John always eats in the hotel restaurant. 
 b. Often (when he in feeling down) 
  John will frequently visit a casino./John will frequent casinos. 
 
In both we seem to be saying of a certain pattern of behavior on John’s part – his 
always eating somewhere, his frequently visiting something, etc. – that it is attested 
with a certain frequency – that it is usual in certain circumstances, that it is frequent, 
etc. 
 
In (23a) always binds the eventuality variables in its scope; hence without a state 
corresponding to always itself, binding by e† in the first arg of usually is vacuous 
(24). We appear to need something like (25):  
 
(24) USUALLY( 
 { e†: ALWAYS( {e: John-eats-in-HR(e)} , {e*: C(e*)})} , { e‡: John-stay-at-4S(e‡)}  ) 
                   e† ?? 
(25)  USUALLY(                ⬇ 
 { e†: ALWAYS( {e: John-eats-in-HR(e)} , {e*: C(e*)},  e† )}, 
                     { e‡: John-stay-at-4S(e‡)} , e* ) 
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2.0 Motivating Argument Separation I 
 
Arg-separation with V provides a clear semantic basis for the syntactic notion θ-role 
and underwrites theories of external merge based on it.  Extending these benefits to 
other categories requires corresponding semantic notions. 
 
2.1 θ-Roles & Selection with V 
 
In the GB period, θ-roles played a key, if technically obscure, role in selection and 
projection. 
 
(26) a. John gave Fido to Mary. 
               “AGENT”  “THEME”  “GOAL” 
 b. GIVE(      x  ,       y  ,       z     ) 
 c.              IP                       
         4      
    NP      I’        
  !       3  
  John     I               VP     α selects β  =  α assigns a θ-role to  β 
            3  
      V’  GL     PP       “Indirect θ-assignment” 
        3      @               “Direct θ-assignment” 
    AG    V     NP   to Mary      “Compositional θ-assignment” 
        g             !                   
       gave        Fido 
        TH      
 
Hornstein (1999):  Represent θ-roles as syntactic features - θ-features. Analyze 
selection/θ-assignment as θ-feature agreement (27).   
 
(27)          VP 
         5  
   gave              John  
   [TH[ ]] ⟵ AGREE ⟶  [TH[ ]] 
 
Pesetsky and Torrego (2007): Features to come in four varieties, according to 
whether they are interpretable/uninterpretable or valued/unvalued (28). 
 
(28) 

 INTERPRETABLE UNINTERPRETABLE 
VALUED iFval Fval 
UNVALUED iF F 

 
Consider θ-features in P&T’s terms.  Suppose we have [AG], [TH], [GL], etc. Suppose 
the selection relation between a predicate and an object is feature agreement  
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Questions: 
 ■ What does it mean for a θ-feature to be interpretable on expression α? 
 ■ Which expression in (27) carries the interpretable TH-feature? 
 ■ What does it mean for a θ-feature to be valued on expression α? 
 ■ Which expression in (27) carries the valued TH-feature? 
 
Neo-Davidsonian arg-separation yields a plausible answer the first question and 
allows different answers to the second. 
 
    give(e) & Ag(e,x) & Gl(e,y) & Th(e,z) 
 
Question: What does it mean for a θ-feature to be interpretable on expression α? 
Answer:  It means θ(e,x) is part of the interpretation of α. 
 
Question: Which expression in (27) carries the interpretable θ-feature? 
Answer:  It depends on how you do composition! 
 
ANALYSIS 1: θ-relations are folded into the lexical semantics of V. Names denote 
individuals (Parsons 1991). 
 
 give  !  λzλyλx∃e[give(e) & Ag(e,x) & Gl(e,y) & Th(e,z)] 
 Mary !  m     John !  j    Fido !  f   
 
(29) a.      vP                      b. ∃e[give(e) & Ag(e,m) & Gl(e,j) & Th(e,f)] 
    3                          tp 
 Mary      v       λx∃e[give(e) & Ag(e,x) & Gl(e,j) & Th(e,f)]          m 
            3                  tp 
                give         VP     λyλx∃e[give(e) & Ag(e,x) &Gl(e,y) & Th(e,f)]        j 
            3                tp 
             John           V’  λzλyλx∃e[give(e) & Ag(e,x) &Gl(e,y) & Th(e,z)]    f 
                                3 
           give        Fido 
 
ANALYSIS 2: θ-relations come with the argument nominals. V contributes only the 
event sortal (Krifka 1993). 
 
 give  !  λe[give(e)] 
 Mary !  λe[Ag(e,m)]  John !  λe[Gl(e,j)]  Fido !  λe[Th(e,f)] 
 
(30) a.      vP                       b. ∃e[give(e) & Ag(e,m) & Gl(e,j) & Th(e,f)] EC 
    3                       g 
 Mary      v        λe[give(e) & Ag(e,m) & Gl(e,j) & Th(e,f)]      
            3                4 
                give          VP     λe[give(e) & Gl(e,j) & Th(e,f)]      λe[Ag(e,m)] 
            3                4 
             John           V’     λe[give(e) & Th(e,f)]       λe[Gl(e,j)] 
                                3       4 
        give        Fido   λe[give(e)]      λe[Th(e,f)]  
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On ANALYSIS 1, Th(e,y) is part of the interpretation of give; hence [TH] is interpretable 
on give. Presumably [TH] is valued on Fido (31a). On ANALYSIS 2, Th(e,y) is part of 
the interpretation of Fido. Hence [TH] as interpretable on Fido. [TH] is valued on give 
(31b).  
 
(31) a.           VP        VP 
           5     5 
   give                  Fido      give                    Fido 
  [iTH[ ]]  ⟵ AGREE ⟶  [THval[ ]]  [THval[ ]]  ⟵ AGREE ⟶   [iTH[ ]] 
      ANALYSIS 1          ANALYSIS 2 
 
Larson (2014) works out ANALYSIS 2 in detail using the full matrix of feature 
possibilities proposed by P&T: 
 
(32)                   vP 
          5 
    Mary                         v’ 
   [iAG[2]]   
              v           VP 
   AGREE!        2     4     
           v           kiss         kiss    John  
       [AGval[2]]  [AG[2]]      [AG[ ]]          [iTH[1]] 
                  [THval[1]]   [THval[1]] 
  
 (33)                 vP 
         5 
   Mary                        v’ 
  [iAG[3]]   
               v            VP 
         2        5     
          v           give      Fido                V’ 
        [AGval[3]] [AG[3]]     [iTH[2]]         5 
              [THval[2]]       give              PP 
 AGREE!   [GL[1]]               [AG[ ]]         3 
               [THval[2]]     to       John 
         AGREE!     [GL[1]]       [GLval[1]]         [iGL[1]] 
                        AGREE! 
 
 Thematic Hierarchy: [AG] > [TH] > [GL] > [LOC] > … 
 
 Constraint: A feature in a θ-set can undergo agreement only if there are  
     no lower-ranked, unagreed features in that set.   
 
Neo-Davidsonian arg-separation with Vs thus: 
 ■ allows GB “θ-roles” and “θ-role assignment” to be coherently recast as  
  formal features subject to formal feature agreement 
 ■ provides a transparent understanding of “interpretable θ-feature” 
 ■ supports a theory of projection and External Merge based on θ-features 
 
This picture seems extensible to A, P, N (2)-(4).  Can it go further? 
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2.2 θ-Roles & Selection with D 
 
Relational View of Determiners:  Ds express relations among predicate meanings. 
 
(34) a. ALL(X,Y)   iff  | Y − X | = 0    Monotransitive D 
 b. SOME(X,Y)  iff  | Y ∩ X |  0 
  c. NO(X,Y)   iff  | Y ∩ X | = 0 
 d. MOST(X,Y)  iff  | Y ∩ X | > | Y − X | 
 e. TWO(X,Y)   iff  | Y ∩ X | = 2               (similarly for other # Ds) 
 f. THE-TWO(X,Y) iff  | Y ∩ X | = 0 , where | Y | = 2               (similarly for the-n) 
 
(35) HEn(X)  iff  g(n) ∈  X      Intransitive D 
 
(36) a. EVERY-EXCEPT(X,Y,Z)  iff  ∣(Y – Z) − X∣ = 0  &  ∣X ∩ Z∣ = 0  Ditransitive D 
 b. Every man except Bill and James smokes 
 b. ∣({x: man(x)} – {Bill,James}) − {x: smokes(x)}∣ = 0  &  
  ∣{Bill,James}) ∩ {x: smokes(x)}∣ = 0 
   
Set arguments play different parts in quantification (cf. 37a,b). Y gives the domain or 
restriction. X gives the “test” set or scope. 1st order formulae (37c) fail to capture 
this difference with some, representing X and Y contributions symmetrically (cf. 38): 
 
(37) a. Some [man] [runs]. 
 b. Some [runner] [is a man]. 
 c, ∃x[man(x) & runs(x)]  =  ∃x[runs(x) & man(x)]   
 
(38) a. Some [men] [are bachelors]. 
 b. Some [bachelors] [are men]. 
 
Larson (1991): Restriction and scope might be thought of as θ-roles assigned by D 
(and other quantifiers) (39a). Pronouns would assign only θSCOPE  Every-except, 
would assign a third role (θEXCP) (39b). 
 
 (39) a.        θSCOPE  θRESTR            θAGENT  θTHEME 
  EVERY(     X    ,    Y     )   KISS(     x    ,    y     ) 
  b.      θSCOPE                            θAGENT  
  HEn (     X      )      LAUGH(     x      ) 
                θSCOPE  θRESTR  θEXCP             θAGENT θTHEME θGOAL 
 c. EVERY-EXCEPT(     X    ,    Y    ,    Z    ) GIVE(      x    ,     y    ,    z    ) 
 
These ideas can be recast in terms of θ-features and θ-feature agreement in parallel 
with vP/VP.  Compare (32/(33) and (40)/(41): 
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(40)                  dP 
          5 
      Pro                         d’ 
       [iSCO[2]]  
              d              DP 
   AGREE!        2         4     
           d         every           every     boy  
       [SCOval[2]] [SCO[2]]    [SCO[ ]]       [iRES[1]] 
                 [RESval[1]]  [RESval[1]] 
  
 (41)                 dP 
         5 
    Pro                         d’ 
      [iSCO[3]]   
               d                DP 
         2            5     
          d           every       boy                   D’ 
      [SCOval[3]] [SCO[3]]     [iRES[2]]          5 
              [RESval[2]]             every          PP 
 AGREE!      [EXC[1]]         [SCO[ ]]        3 
                 [RESval[2]]     except        Bill 
         AGREE!       [EXC[1]]       [EXCval[1]]    [iEXC[1]] 
                             AGREE! 
 Thematic Hierarchy: [SCO] > [RES] > [EXC] > … 
 
If these representations are correct, they suggest that [iSCO], [iRES], [iEXC] should 
correspond to θ-relations in semantic representation.  There should be counterpart 
argument separation for quantification: 
 
(42) a.  EVERY( X , Y )           
 b. P(e) & θSCOPE(e, X) & θRESTR(e, Y)     
 c. P(e) & θSCOPE(e, X) & θRESTR(e, Y) & θEXCP(e, Y)    
 
 
3.0 Motivating Argument Separation II 
   
We noted earlier that arg-separation seems inappropriate for Q-relations. E.g., every 
directly compares membership of sets Y and X (43a). Arg-separation appears to 
sever this connection (43b).  
 
(43) a. EVERY( X , Y )     c. EVERY(s) & θ1(e, X) & θ2(e, Y) 
 b.  X   Y     d.  X        Y 
   a          a 
   b          b 
   c   c       c         c 
   d   ⊇" d       d  ←θ1→ e ←θ2→ d 
   f   f       f  ?       ?  f 
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But compare nominal and adverbial quantification: 
 
(44) a. Everyone who sneezed left. 
 b. Always if John sneezes, Mary leaves. 
 
(45) a. {y: sneezes (y)} ⊇"{x: left(x)} 
 b. {e: leaving(e) & Ag(e,m)} ⊇"{e’: sneezing(e) & Ag(e,j)} X 
 
Davidsonian events are thematically unique; a given event can have at most one 
agent, one theme, one goal, etc.  This means no event of Mary leaving can also be 
an event of John’s sneezing. The first set cannot contain the second.  
 
This result is general for adverbial Qs understood as quantifying over events. 
 
(46) a. If it snows, I usually stay inside. 
 b. MOST(X,Y)  iff  | Y ∩ X | > | Y − X | 
 c. | {e’: Snowing(e’)} ∩ {e: Stay-inside(e) & Th(e,i)} |">"
  | {e’: Snowing(e’)} − {e: Stay-inside(e) & Th(e,i)} |"" X"
 
How is this point accommodated?  Consider Herburger (2000): 
 
(47) a. [most e: C(e) & [∀e’: C(e’) & One-to-one(e,e’)] Snowing(e’)] 
   Stay-inside(e) & Theme(e,I) 
 b. ‘Most events where every one-to-one related event is a snowing are such 
  that I stay inside’#
 c. | ƒ({e’: Snowing(e’)}) ∩ {e: Stay-inside(e) & Th(e,i)} |">"
  | ƒ({e’: Snowing(e’)}) − {e: Stay-inside(e) & Th(e,i)} | 
 
(48) a. ALWAYS( X , Y )     
 b.  X   Y     c.  X      ƒ(Y)      Y 
   a          a 
   b          b  i      ƒ 
   c   c       c  ←← e ←←   q  ƒ  bijection 
   d   ⊇" d       d  ←← e’ ←←   r  i insertion 
   f   f       f  ←← e” ←←   s 
     X 
Adverbial Qs thus present a situation opposite to nominal Qs: we precisely can’t 
compare sets Y and X directly. Comparison of X must be to a subset ƒ(Y) that is the 
one-to-one image of Y. 
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4.0 Executing Argument Separation 
 
4.1 A Temptation 
 
It’s tempting to look to verbal constructions like (49a) in attempting to “neo-
Davidsonianize” quantification: 
 
(49) a. This set of choices exhausts/subsumes/includes our range of options. 
 b. {x: option(x)}  ⊆  {x: choice(x)} 
 c. EVERY(X,Y)  iff  Y ⊆ X    (i.e., iff |Y – X | = 0) 
 
(50)  ∃e"[exhaust/subsume/include(e) & θ1(e, X) & θ2(e, Y)] 
 
This would appeal to a primitive, verbalized counterpart of the subset relation to 
explicate universal quantification. But: 
 
(51)  A ⊆ B  =def  ∀x[ x�A ⟶ x�B]  
 
How can the subset relation explicate universal quantification when subset is itself 
defined in terms of universal quantification?  
 
4.2 Quantizing e 
 
Neo-Davidsonian representation (52c) separates the individuals (X,Y) involved in 
quantification, relating them to e but not to each other. How can we capture the 
equivalent of (52) – how can we relate the two in the way quantification requires? 
 
(52) a. EVERY( X , Y )     c. EVERY(e) & θ1(e, X) & θ2(e, Y) 
 c.  X   Y     d.  X     e       Y 
   a          a 
   b          b 
   c   c       c  ←θ1→         c 
   d   ⊇" d       d      ?   ←θ2→   d 
   f   f       f         ?      f 
 
 
Idea: Take the adverbial situation as basic and attempt to generalize from that. 
 
Tentative proposal: X and Y are related via the structure of e. 
(53) a. Assume e has mereological structure.  
 b. θRESTR(e, Y) iff ∃ ƒ a bijection from Y ➝ e. 
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(54) a.  e       Y    b.  X     e    Y 
             a 
             b 
   e1 ←  ← c      c     e1 ←  ← c 
   e2 ← ƒ ← d      d  ←θ1→ e2 ← ƒ ← d 
   e3 ←  ← f      f  ?  e3 ←  ← f 
 
(55) a.  X     e       Y   b.  X     e    Y 
   a             a 
   b             b 
   c    e1 ←  ← c     c     e1 ←  ← c 
   d    e2 ← ƒ ← d     d     e2 ← ƒ ← d 
   f    e3 ←  ← f     f    e3 ←  ← f 
     σ1             σ2 
 Injections σ from e to X (i.e., functions from e onto X)   
 
Note that iff Y ⊆"X, there will be an injection σ from e to X that, when composed with 
ƒ, is an insertion:  
 
(56) a.  X     e       Y   b.  X     e       Y 
   a             a 
   b             b 
   c    e1 ←  ← c     c     e1        c 
   d    e2 ← ƒ ← d     d     e2        d 
   f    e3 ←  ← f     f    e3           f 

         σ3
                     σ3∘ƒ(x) = x 

 
(57) a. θA∀(e, X) iff ∃ σ an insertion from e to X.    
 b. θD∀(e, X) iff ∃ σ an injection from e to X such that σ∘ƒ  is an insertion. 
  
Under this picture: 
 ■ θRESTR “injects” the structure of ⟦NP⟧ into e, the Q-state. 
  (i.e., the Q-state = the states of those individuals) 
 ■ Individual quantifiers represent θ-relations of e to ⟦Pro⟧.   
  D spells out the “subject” θ-role for DP 
 
(58) a. Everyone who sneezed left. 
 b. ∃e[θD∀(e, ⟦left⟧) & θRESTR(e, ⟦sneezed⟧) ] 
 
(59) a. Always if John sneezes, Mary leaves. 
 b. ∃e[θA∀(e, ⟦Mary leaves⟧) & θRESTR(e, ⟦John sneezes⟧) ] 
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Similar propsals will work for other Qs: 
 
(57) a. θA∃(e, X) iff ∃ σ an injection from e to X such that for some x, σ(x) = x.    
 b. θD∃(e, X) iff ∃ σ an injection from e to X such that for some x, σ∘ƒ(x) = x. 
 
(58) θD¬(e, X) iff for no σ injection from e to X, σ∘ƒ(x) = x, for some x. 
 
 
4.3 Wider Perspectives 
 
■ Krifka (1989;1999) offers an analysis of telicity in which the theme of a telic 

predicate is homomorphically injected into the verbal event. 
Boundness/unboundedness in the former yields boundness/unboundedness in 
the latter.   

 θRESTR appears suspiciously similar to Krifka’s incremental theme relation 
(although making no use of mereological structure for sortal Ns). 

 
■ Davidson (1967a) argues that a great many sentences are underlying event 

quantifications. It would thus not be surprising to find that the event analysis of 
quantifiers underlies the event analysis of familiar, verbal predication. 

 
 
5.0  Summary 
 
■ Neo-Davidsonian analysis of relational Vs appears extensible to lexical As, Ps 

and Ns without major complications. 
■ What about to non-lexical cats – specifically, to relational Ds? 
■ Q1: Is there motivation for positing quantificational states? 
 Q2: Is there motivation for arg-separation? 
 Q3: How could arg-separation be executed semantically? 
■ If causation & perception involve relations to eventualities, and if adverbial Qs  
 quantify over eventualities, quantificational states seem to be motivated (Q1).  
■ If we wish to implement θ-roles as θ-features and appeal to these in the  
 projection of non-lexical cats (D, Q), then arg-separation seems required to give  
 semantic substance to the notion “interpretatable θ-feature for D/Q” (Q2) 
■ Adverbial quantification already suggests a semantics in which the set  
 arguments are related through an intermediate set of events  (Q2) 
■ We explored (briefly and tentatively) potential semantics for quantifier θ-roles  
 that involve mapping through an intermediate event domain (Q3) 
■ Although history proceeded the other way, the resulting picture suggests the  
 tantalizing possibility that quantificational θ-relations are actually more basic  
 than verbal ones - that V is analogous to D, rather than the contrary. 
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Appendix: The K/P Analysis (“K/P” for “Kratzer/Pylkkanen”) 
(A1) a. gave !  λxλe[give’(e) & Th(e,x)]   Mary !  m  
  v  !  λxλe[Ag(e,x)]      John !  j 
  Appl !  λxλe[Gl(e,x)]      Fido !  f 
     
 b.         ∃e[give’(e) & Ag(e,m) & Gl(e,j) & Th(e,f)] 
                   | 
    vP         λe[give’(e) & Ag(e,m) & Gl(e,j) & Th(e,f)] 
      2                      tp 
John       v        λxλe [give’(e) & Ag(e,x) & Gl(e,j) & Th(e,f)] m 
           2              tp      
         v        AppP     λe[give’(e) & Gl(e,j) & Th(e,f)]     λxλe[Ag(e,x)] EI 
            2                 tp 
          Mary       App’    λxλe[give’(e) & Gl(e,x) & Th(e,f) ]       j    
                2             tp 
         App         VP   λe[give’(e) & Th(e, f)]          λxλe[Gl(e,x)] EI 
            2            tp 
         give   Fido λxλe[give’(e) & Th(e,x)]            f 
 
K/P requires a stipulative operation of “Event Identification” (EI) to allow the 
interpretations of App and v to combine properly.  
K/P is thus dispreferred in comparison to K and P (Larson 2014). 


